

IMMUNOCHEMICAL SCREENING FOR SYNTHETIC CANNABINOIDS IN WORKPLACE DRUG TESTING: AN ITALIAN EXPERIENCE

Nadia Fucci¹, Sonia Giacometti², Nadia De Giovanni¹

 1- Institute of Public Health, Section of Legal Medicine Catholic University, Rome, Italy
2- Randox Laboratories Limited, Italia.

TREND IN ILLICIT MARKET

INTRODUCTION OF NEW PSYCHOACTIVE SUBSTANCES

(**NSP**) including Synthetic Cannabinoids

INCREASE IN THE PRODUCTION User - "everyone's on It" **AND MISUSE OF THE NPS** (not

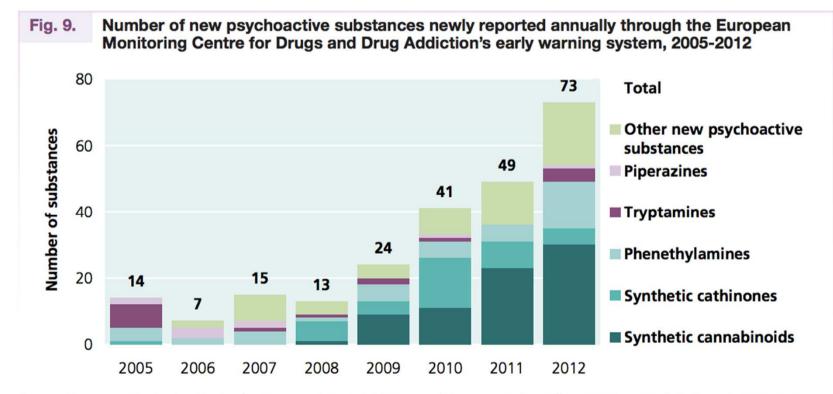
under international control)

Calegories of new pipchaseline substances said in the market

Statistic - 43 deaths in 2010 The Market - out of control The Government - prohibition? The Experts - assessment is impossible!

What can social work add to the legal high debate?

United Nations Office on Drugs and Crime World Health Organization


EXPERT CONSULTATION OF NPS VIENNA, 9-11 december 2014

Number of identified NPS in the European union increased (from 14 in 2005 to 236 by the end of the past year)

EUROPE:

- cannabis the most commonly used of illicit substances
- continual increase in the introduction and use of NPS

EMCDDA : 236 NEW RECREATIONAL DRUGS REPORTED THROUGH THE "EARLY WARNING SYSTEM " (2005-2012)

Source: European Monitoring Centre for Drugs and Drug Addiction and European Police Office, EU Drug Markets Report: A Strategic Analysis (Luxembourg, Publications Office of the European Union, 2013).

NEW PSYCHOACTIVE SUBSTANCES

SYNTHETIC CATHINONES

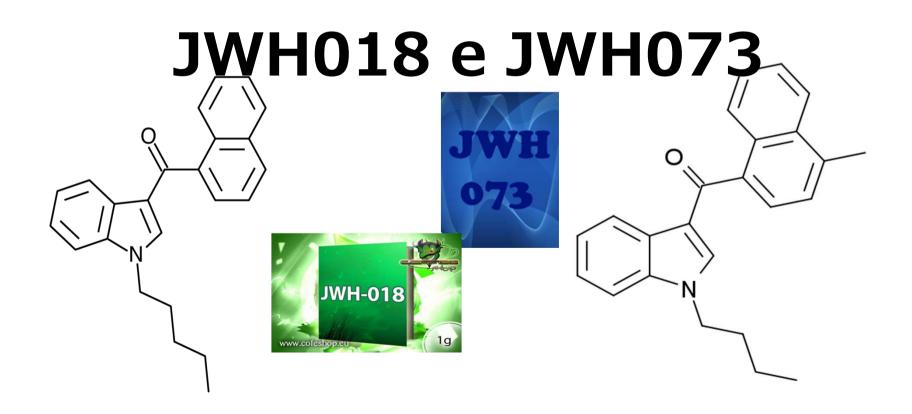
thylone (bk MDMA

REF IDT-SCA

- Synthetic cannabinoids
- Synthetic cathinones
- Phenethylamines (as AMPH, MDMA...)
- Piperazines'
- Ketamine
- Plant as kratom, salvia divinorum, khat

(According to UNODC classification)

MOST WIDELY NPS USED IN EUROPE: Synthetic Cannabinoids


- cannabinoid receptor agonists which produce effects similar to those of Δ9-Tetrahydrocannabinol
- often laced with herbal products and sold as «SPICE» «K2» «KRONIC», etc

- marketed as legal alternatives to cannabis, often labeled "not for human consumption"
- common routes of administration inhalation, oral ingestion

The first S.C. detected in herbal smoking mixture (so called incense/room odorizes)

CLASSIFICATION OF S.C.

Classical cannabinoids

(THC, other constituents of cannabis; and their structurally related synthetic analogues)

Nonclassical cannabinoids

(cyclohexylphenols or 3-arylcyclohexanols)

Hybrid cannabinoids

(combinations of structural features of classical and non-classical cannabinoids)

Aminoalkylindoles : naphtoylindoles

(e. g. JWH-018, JWH-073, JWH-398, JWH-015, JWH-122, JWH-210, JWH-081, JWH-200, WIN-55,212); enylacetylindoles; naphthylmethylindoles and benzoylindoles

Eicosanoids

(endocannabinoids and their synthetic analogs)

Others,diarylpyrazoles,naphtoylpyrroles,naphthylmethylindenesorderivativesofnaphthalene-1-yl-(4-pentyloxynaphthalen-1-yl)methanone

Howlett AC et al . Pharm.Rev. 2002 ,54, 161-202 Thakur GA et al . Mini Rev.Med.Chem. 2005, 5, 631-40

Compound name	Date and place of first identification	Group type
JWH-018	December 2008 (Germany, Japan)	Naphtoylindole
CP-47,497-C8	December 2008 (Germany, Japan)	Cyclohexylphenol
CP-47,497	December 2008 (Germany, Japan)	Cyclohexylphenol
JWH-073	January 2009 (Germany)	Naphtoylindole
HU-210	January/June 2009 (USA, UK)	Classical cannabinoid
JWH-250	October 2009 Germany)	Phenylacetylindole
JWH-398	October 2009 (UK)	Naphtoylindole
JWH-200	December 2009 (Russia)	Naphtoylindole
JWH-081	March 2010 (Germany)	Naphtoylindole
4-Methyl-JWH-073	April 2010 (Germany)	Naphtoylindole
RCS-4	May 2010 (Germany)	Benzoylindole
JWH-015	June 2010 (Austria)	Naphtoylindole
AM-694	July 2010 (Ireland)	Benzoylindole
JWH-122	July 2010 (Latvia)	Naphtoylindole
JWH-210	September 2010 (Germany)	Naphtoylindole
JWH-019	September 2010 (Germany)	Naphtoylindole
JWH-203	October 2010 (Germany)	Phenylacetylindole
WIN-48,098 (Pravadolin)	November 2010 (Germany)	Benzoylindole
JWH-007	November 2010 (Germany)	Naphtoylindole

Source- United Nations Office on Drugs and Crime - WORLD DRUG REPORT

EUROPEAN WORKPLACE DRUG TESTING urine screening

- ACTUALLY A RESTRICTED PANEL (for more common drugs of abuse)

- WORKPLACE GUIDELINES defined the drugs of abuse, their cut-off, which biological samples have to be used

- The detection of the NPS was not included(*not under legal* control in all European countries)

- WIDESPREAD DIFFUSION WOULD SUGGEST A DEEP EVALUATION

COUNTRY	ENFORCEMENT DATE	CONTROLLED SUBSTANCES/REMARKS		
AUSTRIA	2009	"spice" products classified as medicinal preparations		
	2010	CP-47,497-C6/C7/C8/C9,JWH-018,HU-210,JWH-015/019/073/81/200/250		
DENMARK	2010	CP-47,497-C6/C7/C8/C9, JWH-018/73, HU-210, JWH-250/398/200		
ESTONIA	2009	P-47,497-C6/C7/C8/C9, JWH-018/73, HU-210		
FINLAND	not controlled	NH-018/073/200/210, CP-47,497-C6/C7/C8/C9		
		classified as medicinal preparations		
FRANCE	2009	JWH-018, CP-47,497-C6/C7/C8/C9, HU-210		
GERMANY	2009	emergency regulation JWH-018,CP-47, 497- C6/C7/C8/C9		
	2010	permanent control and addition of JWH-019/073		
	2011	JWH-015, JWH-081, JWH-200/250/122		
IRELAND	2010	GENERIC APPROACH		
ITALY	2010	JWH-018, JWH-073-JWH-122, JWH-250 8 TABLE I-SECTION B ITALIAN LAW N.309/90		
JAPAN	2009	controlled as "designated substances" under the Pharmaceutical Affairs Law		
		CP-47, 497-C7/C8, JWH-018, HU-210		
	2010	JWH-073, JWH-250		
LITHUANIA	2009	CP-47, 497-C6/C7/C8/C9, JWH-018, JWH-073, HU-210, JWH-250, JWH-398, JWH-200		
LUXEMBOURG	2009	GENERIC APPROACH		
NEW ZEALAND	not controlled	HU-210 may be regarded as an THC analog		
POLAND	2009	JWH-018,Leonotis Leonurus,Nymphacea caerulea		
ROMANIA	2010	CP-47, 497-C6/C7/C8/C9, JWH-018, JWH-073, JWH-250		
RUSSIA	2009	CP-47,497-C6/C7/C8/C9,HU-210,		
		JWH-007/018/073/081/098/122/149/166/175/176/184/185/192/193/194/195/196/197/198/199/200		
SOUTH KOREA	2009	JWH-018, HU-210, CP-47, 497		
SWEDEN	2009	CP-47, 497-C6/C7/C8/C9,JWH-018, JWH-073,HU-210		
SWITZERLAND	2009	control of "spice herbal mixes"under food regulation (5 grams allowesd for personal use)		
	2010	JWH-018,JWH-019, JWH-073, JWH-250, CP-47,497-C6/C7/C8/C9		
UNITED KINGDOM	2009	GENERIC APPROACH		
USA		HU-210 SCHEDULED AS AN ANALOG OF THC		
	2010	DEA ANNOUNCEMENT TO EMERGENCY SCHEDULE JWH-018, JWH-073- CP-47, 497, CP-47, 497-C8, JWH-200		

FEW FORENSIC LABORATORIES EQUIPPED TO IDENTIFY S.C. WITH IMMUNOCHEMICAL SCREENING FOR the scarcity of the marketed kits

MOST COMMON KITS in EUROPE :

CONCATENO (92 Milton Park, Abbingdone, Oxfordshire, OX14 4RY,UK)

RANDOX (Randox Laboratories Limited, 55 Diamond Road, Crumlin, County Anntrim, BT29 4QY,UK)

NEOGEN (Europe Ltd. The Dairy School, Auchincruive, Ayr, KA6 5HU Scotland , UK)

		-							
		KI	ТС	10	MP/	ARIS	ON (TAE	3LE
	METHOD	QUALITATIVE/ QUANTITATIVE	MATRIX	ASSAY TIME	N. samples/ kit	DETECTION	SAMPLE DILUTION		MOLECULES DETECTED
<u>Concateno</u>	LATERAL FLOW IMMUNO ASSAY	QUALITATIVE	URINE	6'	25	AT A GLANCE	NO	N/A	JWH-018, JWH-073
<u>Randox</u>	BIOCHIP ARRAY TECHNOL OGY	SEMI- QUANTITATI VE	URINE	30'	54	CHEMILUMI NESCENCE	NO	25 ml	JWH-018, JWH-398, JWH-250, MEPHEDRONE HCl, 3',4'-METHYLENEDIOXY-a- PYRROLIDINOBUTIOPHENONE (MDPBP) HCl, 1- BENZYLPIPERAZINE, 1-(3-CHLOROPHENYL) PIPERAZINE MONOHYDROCHLORIDE (m CPP), MESCALINE HCl, SALVORIN A
Neogen	ELISA	QUALITATIVE	URINE, BLOOD, SERUM	75'	96	ABSORBANC E	YES	20 ml	JWH-018, JWH-073, JWH-200, JWH-015, JWH-019, JWH-122, AM2201, AM694

Compound	Neogen		Randox % CR				Concateno	
	1-50	%CR	SC1	SC2	SC3	SC4	Ng/mL	%CR
	(ng/mL)							
JWH-018	0.98	100	100.0	100.0	100.0	0.7		
JWH-073-N-(4-hydroxybutyl) Metabolite	0.10	980	61.9	407.4	138.1	1.3	300	10
JWH-018 N-5-hydroxypentyl	0.13	754	227.0	415.4	227.1	0.9		
JWH-200	0.16	613	269.0	382.0	115.0	<1		
JWH-018- N-pentanoic acid	0.16	613	39.2	231.3	58.7	<1	30	100
AM2232	0.16	613						
JWH-073	0.20	490	116.1	298.5	127.5	<i< td=""><td></td><td></td></i<>		
AM1220	0.21	467	34.3	327.7	238.6	0.4		
JWH-073 N-butanoic acid	0.23	426	11.0	207.4	12.1	<1	15	200
(±) JWH-018-N-(4-hydroxypentyl) Metabolite	0.25	392	77.7	295.6	126.8	<5	200	15
AM2201	0.28	350	225.7	101.7	219.1	<i< td=""><td></td><td></td></i<>		
JWH-022	0.42	233	53.2	80.1	69.6	<i< td=""><td></td><td></td></i<>		
JWH-018 N-(5-hydroxypentyl) ββ-D glucuroni	0.49	200	18.0	308.4	65.3	0.8		
AM-2201 N-(4-hydroxypentyl) Metabolite	0.59	166	71.7	260.4	68.4	0.6	1000	3
3-(1-naphthoyl)-1H-Indole	0.64	153						
JWH-018 6-hydroxyindole	0.78	126	13.6	36.9	62.7	<i< td=""><td></td><td></td></i<>		
AM694	0.90	109	28.5	13.5	3.1	<i< td=""><td></td><td></td></i<>		
JWH-019	1.0	94	89.0	50.0	82.0	<i< td=""><td></td><td></td></i<>		
MAM2201	1.1	88						
JWH-015	1.2	83	26.3	44.5	5.1	<1		
JWH-018 4-hydroxyindole	1.6	60	30.6	3.6	10.7	<1		
JWH-122	1.9	51	71.2	2.0	9.8	<i< td=""><td></td><td></td></i<>		
JWH-018 5-hydroxyindole	2.0	50	4.9	51.8	65.5	<i< td=""><td></td><td></td></i<>		
AM-2201 6-hydroxyindole	2.0	50	6.9	72.3	54.2	<1		
JWH-007	2.9	34	16.0	17.0	2.0	<1		
JWH-398	7.5	13	20.9	<i< td=""><td>5.6</td><td>0.2</td><td></td><td></td></i<>	5.6	0.2		
WIN 55,212-3 mesylate	9.2	11	<i< td=""><td>11.0</td><td>8.0</td><td>0.0</td><td></td><td></td></i<>	11.0	8.0	0.0		
JWH-081	16	6.1	44.2	<i< td=""><td><1</td><td>0.9</td><td></td><td></td></i<>	<1	0.9		
JWH-210	21	4.8	51.3	<1	1.4	<1		
JWH-250- N-(5-carboxypentyl) Metabolite	51	1.9						
JWH-250- N-(4-hydroxypentyl) Metabolite	82	1.2	1.0	0.6	<1	206.0		
JWH-250	188	0.5	1.5	<1	<i< td=""><td>100.0</td><td></td><td></td></i<>	100.0		
JWH-203	205	0.5	<i< td=""><td><1</td><td><i< td=""><td>59.0</td><td></td><td></td></i<></td></i<>	<1	<i< td=""><td>59.0</td><td></td><td></td></i<>	59.0		
RCS-4	255	0.4	61.0	<1	<i< td=""><td>4.1</td><td></td><td></td></i<>	4.1		
RCS-8	365	0.3	<i< td=""><td><1</td><td><i< td=""><td>0.7</td><td></td><td></td></i<></td></i<>	<1	<i< td=""><td>0.7</td><td></td><td></td></i<>	0.7		
JWH 081 N-(5-hydroxypentyl)			172.3	1.5	2.5	<i< td=""><td>1000</td><td>3</td></i<>	1000	3
RCS-4 N-(5-carboxypentyl)			5.5	<1	<i< td=""><td><i< td=""><td>250</td><td>12</td></i<></td></i<>	<i< td=""><td>250</td><td>12</td></i<>	250	12
JWH 200 6-hydroxyindole metabolite			73.7	540.4	146.1	<i< td=""><td>300</td><td>10</td></i<>	300	10
JWH-250-N-5-Hydroxyindole							300	10
Lamotrigine							50	60

Randox/Concateno Drug Screen immunoassays for S.C.

50 authentic urine samples collected over one year in workplace drug testing context (at -20 °C until the analysis)

TO CHECK RANDOX SPECIFICITY:

- drug free urine samples added with SC standards (10 ng/ml) JWH-251- JWH-073-JWH-019 (sample n.1) JWH-018- JWH-122- JWH-073 butanoic acid (sample n.2) JWH-018 pentanoic acid -JWH-081-N-5 hydroxypentyl (sample n.3) JWH-073-5-hydroxyindole- JWH-250 (sample n.4)

TO CHECK CONCATENO SPECIFICITY:

- drug free urine samples added with SC standards (50 ng/ml) JWH-073- JWH-081 JWH-018-JWH-018-4-hydroxypentyl JWH-073 butanoic acid - JWH-18 pentanoic acid

RANDOX immunoassay

- Evidence Investigator Biochip Array Technology : a solid state device containing an array of discrete testing regions containing immobilized antibodies specific to different drugs of abuse (competitive chemiluminescent immunoassay)
- light signal generated from each of the test regions on the biochip is detected using digital imaging technology and compared to that from a stored calibration curve
- Immunochemical screening contains antibodies for mephedrone HCl (Bath Salts I assay- BSI), mescaline HCl (MESC), MDPV/MDPBP HCl (Bath Salts II-BSII), salvinorin A (SALVN), synthetic cannabinoids (SCI, SCII,SCIII and SCIV), benzylpiperazines (BZP), 1-(3-chlorophenyl)piperazine HCl (mCPP, PNPI and PNPII).

COMPOUND	CALIBRATION	ASSAY RANGE Ng/ml	SENSITIVITY Ng/ml	LIMIT OF DETECTION Ng/ml
SCI	JWH-018	0-200	1.47	3.67
SCII	JWH-018	0-200	0.87	3.69
SCIII	JWH-018	0-200	0.35	1.19
SCIV	JWH-250	0-100	0.31	1.17
BSI	MEPHEDRONE	0-38	0.08	0.18
BSII	MDPBP	0-1000	12.58	17.62
BZP	BENZYLPIPERAZINE	0-100	0.34	4.02
PNPI	m CPP	0-50	0.19	1.15
PNPII	m CPP	0-50	0.19	3.51
MESC	mescaline	0-250	0.65	4.07
SALVN	Salvinorin A	0-20	0.02	0.05

CONCATENO immunoassay

- CONCATENO synthetic Cannabinoids Drug Screen test : lateral flow immunoassay for the specific, qualitative detection of synthetic cannabinoids metabolites in human urine at a cut-off level of 30 ng/ml.
- TEST BASED ON principle of competitive immunochemical reaction
- Test contains a nitrocellulose membrane strip pre-coated with drug-protein conjugate in the test region and a pad containing coloured antibody-colloidal gold conjugate.
- An internal procedural control is included in the test card

COMPOUND	SENSITIVITY
	NG/ML
JWH-018 pentanoic acid	30
JWH-018–N-4- hydroxypentyl	200
JWH-081–N-5- hydroxypentyl	1000
AM-2201-N-4-hydroxypentyl	1000
RCS-4-N-5-carboxypentyl	250
JWH-073 butanoic acid	15
JWH-073–N-4- hydroxybutyl	300
JWH-200–N-6- hydroxyindole	300
JWH-250–N-5- hydroxyindole	300
Lamotrigine	50

RESULTS OF IMMUNOCHEMICAL SCREENING

RANDOX: all urine samples negative for S.C. two positive samples:

 Image: Second state of the second s

PNPII (phenilpiperazine compounds > 7.5 ng/ml)

PNPI – PNP II (>68 ng/ml)

CONCATENO: five positive samples for S.C.

Drug free urine samples added with S.C. showed the expected results respect to the declared cross-reactivities

Urine samples positive with Randox were negative with CONCATENO

GC/MS ANALYSIS

- FOCUS GC coupled with DSQ operating in electron impact mode (70 eV)
- Equity 5 capillary column 30 m x 0.25 mm x 0.35 Um thickness
- Hydrolysis with HCl 90 °C for 60 min, alkalinization, liquid/liquid extraction with chloroform
- **BSTFA** derivatization
- Std. available: JWH-251, JWH-251- JWH-073-JWH-019-JWH-018- JWH-122- JWH-073 butanoic acid -JWH-018 pentanoic acid -JWH-081-N-5 hydroxypentyl- JWH-073-5hydroxyindole- JWH-250
- L/L extraction of urine samples from acid and alkaline pH in order to detect the possible presence of interfering xenobiotics

SAMPLE	IMMUNOASSAY	GC/MS RESULTS
1 -	RANDOX	CAFFEINE
2	RANDOX	CAFFEINE
3-	CONCATENO	PROPOFOL-CARNEGINE-COCAINE METABOLITES
4-	CONCATENO	NEGATIVE
5-	CONCATENO	METHANONE
6-	CONCATENO	HYDROXYMETHYLCOLCHICINE- COCA INE METABOLITES
7-	CONCATENO	NIPACIDE

- BSI (bath salts)- PNPII (phenylpiperazines) (positive results with RANDOX) no confirmation GC/MS for unavailability of reference standards

- urine samples (positive results with CONCATENO) excluded the presence of the S.C. exploited (JWH-251- JWH-073-JWH-019 -JWH-018- JWH-122- JWH-073 butanoic acid -JWH-018 pentanoic acid -JWH-081-N-5 hydroxypentyl JWH-073-5-hydroxyindole- JWH-250JWH-018-4-hydroxypentyl)

- presence of the xenobiotics revealed by GC/MS (*caffeine, propofol, cocaine, carnegine, methanone, nipacide, hydroxymethylcolchicine*) could interfered with immunochemical results

NOT POSSIBLE TO EXCLUDE THE PRESENCE OF OTHER MOLECULES

- THIS PRELIMINARY STUDY UNDERLINE THE NECESSITY TO RESOLVE DIFFERENT PROBLEMS BEFORE THE ROUTINELY EMPLOY OF THE IMMUNOCHEMICAL KITS
- UTILITY OF IMMUNOCHEMICAL SCREENING FOR SYNTHETIC CANNABINOIDS FOR THE LABORATORIES THAT ARE ABLE TO CONFIRM THE PRELIMINARY RESULTS
- AVAILABILITY OF ALL REFERENCE STANDARDS
- UPDATING AND CIRCULATION OF INFORMATION BETWEEN THE DIFFERENT COUNTRIES
- SPECIAL ATTENTION BY THE EWDT SOCIETY TO THE DIFFERENT PROBLEMS RELATIVELY TO THE NEW PHENOMENON OF THE NEW PSYCHOACTIVE SUBSTANCES